DOI QR코드

DOI QR Code

A Study on the H3PO4-Treated Soft Carbon as Anode Materials for Lithium Ion Batteries

리튬이온전지용 소프트카본 음극 소재의 인산 처리에 대한 연구

  • Jo, Yong-Nam (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Lee, En-Young (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Park, Min-Sik (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Hong, Ki-Joo (Advanced Battery Materials Team R&D Center, GS Energy) ;
  • Lee, Sang-Ick (Advanced Battery Materials Team R&D Center, GS Energy) ;
  • Jeong, Hu-Young (School of Mechanical & Advanced Materials Engineering, UNIST) ;
  • Lee, Zonghoon (School of Mechanical & Advanced Materials Engineering, UNIST) ;
  • Oh, Seung M. (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Young-Jun (Advanced Batteries Research Center, Korea Electronics Technology Institute)
  • 조용남 (차세대전지연구센터 전자부품연구원) ;
  • 이은영 (차세대전지연구센터 전자부품연구원) ;
  • 박민식 (차세대전지연구센터 전자부품연구원) ;
  • 홍기주 (기술연구소GS에너지) ;
  • 이상익 (기술연구소GS에너지) ;
  • 정후영 (기계.신소재공학부 울산과학기술대학교) ;
  • 이종훈 (기계.신소재공학부 울산과학기술대학교) ;
  • 오승모 (화학생물공학부 서울대학교) ;
  • 김영준 (차세대전지연구센터 전자부품연구원)
  • Received : 2012.09.04
  • Accepted : 2012.10.21
  • Published : 2012.11.30

Abstract

Soft carbons are prepared by heat-treatment of cokes with different amounts of phosphoric acid (2, 4.5, and 10 wt% vs. cokes) at $900^{\circ}C$ to be used as anode materials for lithium ion batteries. From electrochemical measurements combined with structural analyses, we confirm that abundant nano-pores are existed in the microstructure of soft carbons prepared with the phosphoric acid, which are responsible for further lithium ion storage. Significant increase in reversible capacity of soft carbon is attained in proportion to added amount of the phosphoric acid. We also demonstrate the effect of structural modification with phosphoric acid on electrochemical performance of soft carbon to elucidate the origin of additional capacity.

코크스와 인산을 혼합한 뒤 $900^{\circ}C$에서 열처리하여 제조한 소프트카본의 구조적 특성 변화와 리튬이온전지용 음극 소재로서의 전기화학적 특성을 평가하였다. 입자 단면의 EDS 분석으로 phosphorus는 입자 내부에 전체적으로 존재하기는 하나 표면에 편재해 있었으며, $PO_x$(0 < x ${\leq}$ 4)의 결합 형태로 존재하고 있음을 XPS 분석을 통해 확인하였다. 인산 처리한 소프트카본의 방전 용량은 $390mAh\;g^{-1}$ 이상으로 인산을 처리하지 않은 소프트카본($336mAh\;g^{-1}$)보다 증가하였으며, 인산 처리량이 증가함에 따라 방전 용량이 증가하는 경향성을 나타내었다. 방전 용량 증가는 0.5 V vs. Li/$Li^+$ 이상에서 발현되는 용량 증가에 의한 것임을 확인하였고, 인산 처리로 생성된 $PO_x$(0 < x ${\leq}$ 4) 결합에 의해 소프트카본 내부에 생성된 나노 기공에 의한 것임을 충전 종료 전위별 실험을 통해 확인하였다. 또한 인산 2 wt%로 처리한 소프트카본이 가장 우수한 수명 특성을 나타내었다.

Keywords

References

  1. M. Winter and R. J. Brodd, 'What Are Batteries, Fuel Cells, and Supercapacitors?' Chem. Rev., 104, 4245, (2004). https://doi.org/10.1021/cr020730k
  2. Y. P. Wu, E. Rahm, and R. Holze, 'Carbon anode Materials for lithium ion batteries' J. Power Sources, 114, 228, (2003). https://doi.org/10.1016/S0378-7753(02)00596-7
  3. S. J. Gerssen-Gondelach and A. P. C. Faaij, 'Performance of batteries for electric vehicles on short and longer term' J. Power Sources, 212, 111, (2012). https://doi.org/10.1016/j.jpowsour.2012.03.085
  4. Y. Sato, K. Nagayama, Y. Sato, and T. Takamura, 'A promising active anode material of Li-ion battery for hybrid electric vehicle' J. Power Sources, 189, 490, (2009). https://doi.org/10.1016/j.jpowsour.2008.11.112
  5. C. K. Back and J. Prakash, 'Consideration of carbon structure effect on thermal stability of carbon anode for Li-ion rechargeable batteries' Thermochimica Acta, 520, 93, (2011). https://doi.org/10.1016/j.tca.2011.03.021
  6. I. Mochida, C. H. Ku, S. H. Yoon, and Y. Korai, 'Anodic performace and mechanism of mesophase-pitch-derived carbons in lithium ion batteries' J. Power Sources, 75, 214, (1998). https://doi.org/10.1016/S0378-7753(98)00101-3
  7. S. J. Lee, M. Nishizawa, and I. Uchida, 'Fabrication of mesophase pitch carbon thin film electrodes and the effect of heat treatment on electrochemical lithium insertion and extraction' Electrochim. Acta, 44, 2379, (1999). https://doi.org/10.1016/S0013-4686(98)00373-9
  8. T. Tran, B. Yebka, X. Song, G. Nazri, K. Kinoshita, and D. Curtis, 'Thermal and electrochemical studies of carbons for Li-ion batteries: 2. Correlation of active sites and irreversible capacity loss' J. Power Sources, 85, 269, (2000). https://doi.org/10.1016/S0378-7753(99)00343-2
  9. K. Sato, M. Nouguchi, A. Demachi, N. Oki, and M. Endo, 'A Mechanism of Lithium Storage in Disdorder Carbons' Science, 264, 556, (1994). https://doi.org/10.1126/science.264.5158.556
  10. J. R. Dahn, T. Zheng, Y. Liu, and J. S. Xue, 'Mechanisms for Lithium Insertion in Carbonaceous Materials' Science, 270, 590, (1995). https://doi.org/10.1126/science.270.5236.590
  11. K. Tatsumi, T. Akai, T. Imamura, K. Zaghib, N. Iwashita, S. Higuchi, and Y. Sawada, '7Li-Nuclear Magnetic Resonance Observation of Lithium Insertion into Mesocarbon Microbeads' J. Electrochem. Soc., 143, 1923, (1996). https://doi.org/10.1149/1.1836926
  12. M. Noel and V. Suryanarayanan, 'Role of carbon host lattices in Li-ion intercalation/de-intercalation processes' J. Power Sources, 111, 193, (2002). https://doi.org/10.1016/S0378-7753(02)00308-7
  13. A. Concheso, R. Santamaria, R. Menendez, R. Alcantara, P. Lavela, and J. L. Tirado, 'Influence of the oxidative stabilisation treatment time on the electrochemical performance of anthracene oils cokes as electrode materials for lithium batteries' J. Power Sources, 161, 1324, (2006). https://doi.org/10.1016/j.jpowsour.2006.04.148
  14. Y. J. Kim, H. J. Yang, S. H. Yoon, Y. Korai, I. Mochida, and C. H. Ku, 'Anthracite as a candidate for lithium ion battery anode' J. Power Sources, 113, 157, (2003). https://doi.org/10.1016/S0378-7753(02)00528-1
  15. F. Bonino, S. Brutti., M. Piana, S. Natale, B. Scrosati, L. Gherghel, and K. Mullen, 'Structural and electrochemical studies of a hexaphenylbenzene pyrolysed soft carbon as anode material in lithium batteries' Electrochim. Acta, 51, 3407, (2006). https://doi.org/10.1016/j.electacta.2005.09.036
  16. A. M. Puziy, O. I. Poddubnaya, R. P. Socha, J. Gurgul, and M. Wisniewski, 'XPS and NMR studies of phosphoric acid activated carbons' Carbon, 46, 2113, (2008). https://doi.org/10.1016/j.carbon.2008.09.010
  17. R. Imamura, K. Matsui, S. Takeda, J. Ozaki, and A. Oya, 'A new role for phosphorus in graphitization of phenolic resin' Carbon, 37, 261, (1999). https://doi.org/10.1016/S0008-6223(98)00172-9
  18. Y. J. Lee and L. R. Radovic, 'Oxidation inhibition effectss of phosphorus and boron in different carbon fabrics' Carbon, 41, 1987, (2003). https://doi.org/10.1016/S0008-6223(03)00199-4
  19. D. W. Mckee, C. L. Spiro, and E. J. Lamby, 'The inhibition of graphite oxidation by phosphorus additives' Carbon, 22, 285, (1984). https://doi.org/10.1016/0008-6223(84)90172-6
  20. A. Mabuchi, K. Tokumitsu, H. Fujimoto, and T. Kasuh, 'Charge-Discharge Characteristics of the Mesocarbon Microbeads Heat-Treated at Different Temperature' J. Electrochem. Soc., 142, 1041, (1995). https://doi.org/10.1149/1.2044128
  21. M. Molina-Sabio, F. Rodriguez-Reinoso, F. Caturla, and J. Selles, 'Porosity in granular carbons activated with phosphoric acid' Carbon, 33, 1105, (1995). https://doi.org/10.1016/0008-6223(95)00059-M

Cited by

  1. Effects of phosphorus content and operating temperature on the electrochemical performance of phosphorus-doped soft carbons vol.15, pp.4, 2014, https://doi.org/10.5714/CL.2014.15.4.277
  2. Electrochemical Characteristics of Surface Modified CTP Anode by H3PO4Treatment vol.27, pp.4, 2016, https://doi.org/10.14478/ace.2016.1053
  3. High-Performance Soft Carbons Prepared by Treatment with Various Phosphorus Acids vol.35, pp.8, 2014, https://doi.org/10.5012/bkcs.2014.35.8.2357