Publications
Prof. Zonghoon Lee’s Atomic-Scale Electron Microscopy Lab
Prof. Zonghoon Lee’s Atomic-Scale Electron Microscopy Lab
Link to Google Scholar
Publications in Nature | Science | their sister journals
Nature, 629, 348-354,2024 / Nature Communications, 14:4747, 2023 / Nature Communications, 13:4916, 2022 / Nature Communications, 13:2759, 2022 / Nature, 596, 519-524, 2021 / Nature, 582, 511-514, 2020 / Nature Nanotechnology, 15, 289-295, 2020 / Nature Nanotechnology, 15, 59-66, 2020 / Science Advances, 6 (10), eaay4958, 2020 / Nature Electronics, 3, 207-215, 2020 / Nature Communications, 11 (1437), 2020 / Nature Energy, 3, 773-782, 2018 / Nature Communications, 8:1549, 2017 / Nature Communications, 6:8294, 2015 / Nature Communications, 6:7817, 2015 / Nature Communications, 5:3383, 2014
Abstract
In the present study, the relationships between the structure and properties of a cryomilled Al-7.5 pct Mg alloy were investigated. The microstructure of the cryomilled Al-7.5 pct Mg alloy consisted of equiaxed grains with an approximate size of 300 nm. Thermal treatment had only a minor effect on microstructure, as evidenced by X-ray diffraction (XRD) and transmission electron microscopy (TEM) results. The tensile behavior was characterized by high strength, high ductility, and low-strain-hardening. The tensile deformation was relatively uniform, with limited necking deformation, and fracture surfaces were characterized by microdimples. The variation of strain rates from 4 · 10−4 to 4 · 10−2 s−1 had an insignificant effect on tensile behavior. Comparison of compressive and tensile behavior revealed similar moduli and yield strengths, although the postyield behavior was markedly asymmetric. The present results indicate that grain-size effects, solid-solution strengthening, Orowan strengthening, and dislocation strengthening contribute significantly to the properties of a cryomilled Al-7.5 pct Mg alloy.