본문바로가기

Publications

Prof. Zonghoon Lee’s Atomic-Scale Electron Microscopy Lab

Publications

Link to Google Scholar


Publications in Nature | Science | their sister journals


Nature, 629, 348-354,2024 /  Nature Communications, 14:4747, 2023 / Nature Communications, 13:4916, 2022 / Nature Communications, 13:2759, 2022 / Nature, 596, 519-524, 2021 Nature, 582, 511-514, 2020 / Nature Nanotechnology, 15, 289-295, 2020 / Nature Nanotechnology, 15, 59-66, 2020 / Science Advances, 6 (10), eaay4958, 2020 / Nature Electronics, 3, 207-215, 2020 / Nature Communications, 11 (1437), 2020 / Nature Energy, 3, 773-782, 2018 / Nature Communications, 8:1549, 2017 / Nature Communications, 6:8294, 2015 / Nature Communications, 6:7817, 2015 / Nature Communications, 5:3383, 2014 






Abstract


 The structural engineering of 2D layered materials is emerging as a powerful strategy to design catalysts for high‐performance hydrogen evolution reaction (HER). However, the ultimate test of this technology under typical operating settings lies in the reduced performance and the shortened lifespan of these catalysts. Here, a novel approach is proposed to design efficient and robust HER catalysts through out‐of‐plane deformation of 2D heterojunction using metal‐organic chemical vapor deposition. High‐yield, single‐crystalline WTe2 nanobelts are used as an epitaxial template for their coherent conversion to WS​2. During the conversion process, the WTe2/WS​2 heterostructure containing both lateral and vertical junctions are achieved by coherent heteroepitaxial stacking despite differences in symmetry. The lattice coherency drives out‐of‐plane deformation of heteroepitaxially grown WS2. The increase in the effective surface area and decrease in the electron‐transfer resistance across the 2D heterojunctions in turn enhances the HER performance as well as the long‐term durability of these electrocatalysts.

2024

2023

2022

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

Prior to Joining UNIST, 2011

TOP