본문바로가기

Research

Prof. Zonghoon Lee’s Atomic-Scale Electron Microscopy Lab

Research


867c6148ceccdd49f2310cd6986c921f_1620027340_2217.jpg


Abstract


 Graphene-based two-dimensional heterostructures are of substantial interest both for fundamental studies and their various potential applications. Particularly interesting are atomically thin semiconducting oxides on graphene, which uniquely combine a wide band gap and optical transparency. Here, we report the atomic-scale investigation of a novel self-formation of a ZnO monolayer from the Zn metal on a graphene oxide substrate. The spontaneous oxidation of the ultrathin Zn metal occurs by a reaction with oxygen supplied from the graphene oxide substrate, and graphene oxide is deoxygenated by a transfer of oxygen from O-containing functional groups to the zinc metal. The ZnO monolayer formed by this spontaneous redox reaction shows a graphene-like structure and a band gap of about 4 eV. This study demonstrates a unique and straightforward synthetic route to atomically thin two-dimensional heterostructures made from a two-dimensional metal oxide and graphene, formed by the spontaneous redox reaction of a very thin metal layer directly deposited on graphene oxide.
 

Research fields

Our research focuses on atomic-scale characterization, design, and synthesis as well as the properties of advanced materials including 2D materials, carbon materials, and soft matter by means of aberration-corrected transmission electron microscopy and spectroscopy. In situ experiments at both the atomic and nano scales are implemented for our study.

Advanced TEM Characterization
Atomic-Scale Defects Study
In Situ TEM Characterization: mechanical, thermal, and electrical experiments
In Situ Gas/Liquid Phase TEM Experiments

Research highlights

Journal covers & artworks

TOP