본문바로가기

Research

Prof. Zonghoon Lee’s Atomic-Scale Electron Microscopy Lab

Research


867c6148ceccdd49f2310cd6986c921f_1620028222_4544.jpg

Abstract


 Transition to a commensurate state changes the local symmetry periodicity on two-dimensional van der Waals superstructures, evoking distinctive properties far beyond individual layers. We investigate the morphology of moiré superstructures of graphene on hexagonal boron nitride (hBN) with a low twist angle (≈0°) through moiré fringe analyses with dark field transmission electron microscopy. The moiré fringes exhibit local variation, suggesting that the interaction between graphene and hBN depends on the stacking configuration and that local transition to the commensurate state occurs through the reduced crystalline mismatch (that is, by lattice stretching and twisting on the graphene lattices). This moiré superstructure analysis suggests an inventive method for studying the interaction between stacked van der Waals layers and for discerning the altered electronic and optical properties of graphene on hBN superstructures with a low twist angle, even at low magnification.
 

Research fields

Our research focuses on atomic-scale characterization, design, and synthesis as well as the properties of advanced materials including 2D materials, carbon materials, and soft matter by means of aberration-corrected transmission electron microscopy and spectroscopy. In situ experiments at both the atomic and nano scales are implemented for our study.

Advanced TEM Characterization
Atomic-Scale Defects Study
In Situ TEM Characterization: mechanical, thermal, and electrical experiments
In Situ Gas/Liquid Phase TEM Experiments

Research highlights

Journal covers & artworks

TOP