본문바로가기

Publications

Prof. Zonghoon Lee’s Atomic-Scale Electron Microscopy Lab

Publications

Link to Google Scholar


Publications in Nature | Science | their sister journals


Science Advances, 10 (45), 2024 / Nature, 629, 348-354,2024 /  Nature Communications, 14:4747, 2023 / Nature Communications, 13:4916, 2022 / Nature Communications, 13:2759, 2022 / Nature, 596, 519-524, 2021 Nature, 582, 511-514, 2020 / Nature Nanotechnology, 15, 289-295, 2020 / Nature Nanotechnology, 15, 59-66, 2020 / Science Advances, 6 (10), 2020 / Nature Electronics, 3, 207-215, 2020 / Nature Communications, 11 (1437), 2020 / Nature Energy, 3, 773-782, 2018 / Nature Communications, 8:1549, 2017 / Nature Communications, 6:8294, 2015 / Nature Communications, 6:7817, 2015 / Nature Communications, 5:3383, 2014 






Abstract


 The exceptional strength and distinct deformation physics exhibited by pure ultrafine-grained and nanocrystalline metals in comparison to their microcrystalline counterparts have been ascribed to the dominant influence of grain boundaries in accommodating plastic flow. Such grain-boundary-mediated mechanisms can be augmented by additional strengthening in nanocrystalline alloys via solute and precipitate interactions with dislocations, although its potency is a function of the changes in the elastic properties of the alloyed material. In this study, we investigate the elastic and plastic properties of Al1−xMox alloys (0  x  0.32) by tensile testing of sputter-deposited freestanding thin films. Isotropic elastic constants and strength are measured over the composition range for which three microstructural regimes are identified, including solid solutions, face-centered cubic and amorphous phase mixtures and body-centered cubic (bcc)/amorphous mixtures. Whereas the bulk modulus is measured to follow the rule of mixtures over the Mo composition range, the Young’s and shear moduli do not. Poisson’s ratio is non-monotonic with increasing Mo content, showing a discontinuous change at the onset of the bcc/amorphous two-phase region. The strengthening measured in alloyed thin films can be adequately predicted in the solid solution regime only by combining solute strengthening with a grain boundary pinning model. The single-step co-sputtering procedure presented here results in diversity of alloy compositions and microstructures, offering a promising avenue for tailoring the mechanical behavior of thin films. 

2024

2023

2022

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

Prior to Joining UNIST, 2011

TOP