Publications
Prof. Zonghoon Lee’s Atomic-Scale Electron Microscopy Lab
Prof. Zonghoon Lee’s Atomic-Scale Electron Microscopy Lab
Link to Google Scholar
Publications in Nature | Science | their sister journals
Science Advances, 10 (45), 2024 / Nature, 629, 348-354,2024 / Nature Communications, 14:4747, 2023 / Nature Communications, 13:4916, 2022 / Nature Communications, 13:2759, 2022 / Nature, 596, 519-524, 2021 / Nature, 582, 511-514, 2020 / Nature Nanotechnology, 15, 289-295, 2020 / Nature Nanotechnology, 15, 59-66, 2020 / Science Advances, 6 (10), 2020 / Nature Electronics, 3, 207-215, 2020 / Nature Communications, 11 (1437), 2020 / Nature Energy, 3, 773-782, 2018 / Nature Communications, 8:1549, 2017 / Nature Communications, 6:8294, 2015 / Nature Communications, 6:7817, 2015 / Nature Communications, 5:3383, 2014
Abstract
For the realization of commercially viable ethanol fuel cells, despite much safer than hydrogen gas, it is necessary to develop stable high-performance catalysts for ethanol electro-oxidation reaction (EOR). Unfortunately, current EOR catalysts are far from the expectation and suffer from fast activity degradation. Here we report palladium-cobalt phosphide (Pd–Co2P) nanoparticles (NPs) with Pd single atoms (PdSAs) anchored on graphene oxide (GO) (denoted as Pd–Co2P–PdSAs@GO). Its EOR mass activity (10,520 mA/mgPd) is remarkably larger than any reported carbon-based precious metal catalysts including the benchmark Pd/C catalyst. To achieve high activity and stability, we systematically designed the catalyst with optimized elements ratio (Pd, Co/Ni/Fe, and P) and pyrolysis temperature together with electrochemical activation. The synergistic effect of charge-transfer between Pd and Co2P coexisting on the PdSAs@GO surface to shift the Pd d-band center promotes the bimetallic catalyst activity. The strong binding of PdSAs@GO with metals and the phosphide ligand stabilized NPs provide long-term durability. In-situ Raman analysis reveals that Co2P plays major roles in eliminating poisoning CO at neighboring Pd sites and retaining the catalytic activity even after 20 h.