Publications
Prof. Zonghoon Lee’s Atomic-Scale Electron Microscopy Lab
Prof. Zonghoon Lee’s Atomic-Scale Electron Microscopy Lab
Link to Google Scholar
Publications in Nature | Science | their sister journals
Science Advances, 10 (45), 2024 / Nature, 629, 348-354,2024 / Nature Communications, 14:4747, 2023 / Nature Communications, 13:4916, 2022 / Nature Communications, 13:2759, 2022 / Nature, 596, 519-524, 2021 / Nature, 582, 511-514, 2020 / Nature Nanotechnology, 15, 289-295, 2020 / Nature Nanotechnology, 15, 59-66, 2020 / Science Advances, 6 (10), 2020 / Nature Electronics, 3, 207-215, 2020 / Nature Communications, 11 (1437), 2020 / Nature Energy, 3, 773-782, 2018 / Nature Communications, 8:1549, 2017 / Nature Communications, 6:8294, 2015 / Nature Communications, 6:7817, 2015 / Nature Communications, 5:3383, 2014
Abstract
The structure of graphene grown in chemical vapor deposition (CVD) is sensitive to the growth condition, particularly the substrate. The conventional growth of high-quality graphene via the Cu-catalyzed cracking of hydrocarbon species has been extensively studied; however, the direct growth on noncatalytic substrates, for practical applications of graphene such as current Si technologies, remains unexplored. In this study, nanocrystalline graphene (nc-G) spirals are produced on noncatalytic substrates by inductively coupled plasma CVD. The enhanced out-of-plane electrical conductivity is achieved by a spiral-driven continuous current pathway from bottom to top layer. Furthermore, some neighboring nc-G spirals exhibit a homogeneous electrical conductance, which is not common for stacked graphene structure. Klein-edge structure developed at the edge of nc-Gs, which can easily form covalent bonding, is thought to be responsible for the uniform conductance of nc-G aggregates. These results have important implications for practical applications of graphene with vertical conductivity realized through spiral structure.