본문바로가기

Publications

Prof. Zonghoon Lee’s Atomic-Scale Electron Microscopy Lab

Publications

Link to Google Scholar


Publications in Nature | Science | their sister journals


Science Advances, 10 (45), 2024 / Nature, 629, 348-354,2024 /  Nature Communications, 14:4747, 2023 / Nature Communications, 13:4916, 2022 / Nature Communications, 13:2759, 2022 / Nature, 596, 519-524, 2021 Nature, 582, 511-514, 2020 / Nature Nanotechnology, 15, 289-295, 2020 / Nature Nanotechnology, 15, 59-66, 2020 / Science Advances, 6 (10), 2020 / Nature Electronics, 3, 207-215, 2020 / Nature Communications, 11 (1437), 2020 / Nature Energy, 3, 773-782, 2018 / Nature Communications, 8:1549, 2017 / Nature Communications, 6:8294, 2015 / Nature Communications, 6:7817, 2015 / Nature Communications, 5:3383, 2014 






- Selected as this month’s featured article on the Minerals, Metals & Materials Society (TMS) eNews on October 2009 and open access article. 


Abstract


 The tensile fractures of ultrafine-grained (UFG) Al-Mg alloy with a bimodal grain size were investigated at the micro- and macroscale using transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with focused ion beam (FIB), and optical microscopy. The nanoscale voids and crack behaviors near the tensile fracture surfaces were revealed in various scale ranges and provided the evidence to determine the underlying tensile deformation and fracture mechanisms associated with the bulk bimodal metals. The bimodal grain structures exhibit unusual deformation and fracture mechanisms similar to ductile-phase toughening of brittle materials. The ductile coarse grains in the UFG matrix effectively impede propagation of microcracks, resulting in enhanced ductility and toughness while retaining high strength. In view of the observations collected, we propose a descriptive model for tensile deformation and fracture of bimodal UFG metals. 

2024

2023

2022

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

Prior to Joining UNIST, 2011

TOP