본문바로가기

Publications

Prof. Zonghoon Lee’s Atomic-Scale Electron Microscopy Lab

Publications

Link to Google Scholar


Publications in Nature | Science | their sister journals


Science Advances, 10 (45), 2024 / Nature, 629, 348-354,2024 /  Nature Communications, 14:4747, 2023 / Nature Communications, 13:4916, 2022 / Nature Communications, 13:2759, 2022 / Nature, 596, 519-524, 2021 Nature, 582, 511-514, 2020 / Nature Nanotechnology, 15, 289-295, 2020 / Nature Nanotechnology, 15, 59-66, 2020 / Science Advances, 6 (10), 2020 / Nature Electronics, 3, 207-215, 2020 / Nature Communications, 11 (1437), 2020 / Nature Energy, 3, 773-782, 2018 / Nature Communications, 8:1549, 2017 / Nature Communications, 6:8294, 2015 / Nature Communications, 6:7817, 2015 / Nature Communications, 5:3383, 2014 






- Featured on News 


Abstract


 A key challenge in the development of two-dimensional (2D) devices is the fabrication of metal–semiconductor junctions with minimal contact resistance and depinned energy levels. An ideal solution for practical applications is to make contacts between 2D van der Waals semiconductors and 2D van der Waals metals. Here we report the wafer-scale production of patterned layers of metallic transition metal ditellurides on different substrates. Our tungsten ditelluride and molybdenum ditelluride layers, which are grown using a tellurization process applied to a precursor transition metal layer, have an electronic performance comparable to that of mechanically exfoliated flakes and can be combined with the 2D semiconductor molybdenum disulfide. The resulting metal–semiconductor junctions are free from significant disorder effects and Fermi-level pinning, and are used to create monolayer molybdenum disulfide field-effect transistors. The Schottky barrier heights of the devices also largely follow the trend of the Schottky–Mott limit.

2024

2023

2022

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

Prior to Joining UNIST, 2011

TOP