Publications
Prof. Zonghoon Lee’s Atomic-Scale Electron Microscopy Lab
Prof. Zonghoon Lee’s Atomic-Scale Electron Microscopy Lab
Link to Google Scholar
Publications in Nature | Science | their sister journals
Science Advances, 10 (45), 2024 / Nature, 629, 348-354,2024 / Nature Communications, 14:4747, 2023 / Nature Communications, 13:4916, 2022 / Nature Communications, 13:2759, 2022 / Nature, 596, 519-524, 2021 / Nature, 582, 511-514, 2020 / Nature Nanotechnology, 15, 289-295, 2020 / Nature Nanotechnology, 15, 59-66, 2020 / Science Advances, 6 (10), 2020 / Nature Electronics, 3, 207-215, 2020 / Nature Communications, 11 (1437), 2020 / Nature Energy, 3, 773-782, 2018 / Nature Communications, 8:1549, 2017 / Nature Communications, 6:8294, 2015 / Nature Communications, 6:7817, 2015 / Nature Communications, 5:3383, 2014
Abstract
New high-k gate dielectrics are highly necessary in facilitating the continuous down-scaling of metal–oxide–semiconductor devices to the sub-10 nm range. This study presents ultrathin organic hydrocarbon (HC) films as a novel high-k gate insulator for metal–insulator–semiconductor (MIS) devices. During inductively-coupled plasma chemical vapor deposition with CH4 and H2 gases, the growth temperature greatly affects the structure of the carbon layers and consequently their dielectric characteristics. Specifically, sp2-rich dielectric HC layers are formed below 600 °C, whereas highly-ordered sp2-hybridized graphene is formed at 950 °C. The k value of the resulting HC films increases up to a maximum value of 90 at 350 °C. Moreover, the MIS devices exhibit excellent gate-insulating properties, including almost no hysteresis in the capacitance–voltage curve, low leakage current, and high dielectric strength, which surpass those of existing high-k gate oxides. These results reveal that the organic HC films are a promising next-generation high-k gate dielectric material for sub-10 nm node Si and organic semiconductor technologies.